
libeqh documentation

David A. Dalrymple

libeqh (at) dalrymple.co

(Draft produced October 27, 2016)

Contents

1 Defining the Problem 1
1.1 Contest API . 1

1.1.1 Asynchrony & Threading . 2
1.1.2 Return value . 2
1.1.3 Input & Output . 2

1.2 Zcash-equihash . 3
1.2.1 Hash function . 3
1.2.2 Difficulty condition . 3
1.2.3 Nonce . 4

1.3 Our problem statement . 4
1.3.1 Parameters . 4
1.3.2 Input . 4
1.3.3 Output . 4

2 Our Algorithm 5
2.1 Overview . 5
2.2 Probabilistic analysis . 5

1 Defining the Problem

This library was conceived as a submission to the contest announced at https://zcashminers.org/ (archived) for MIT-licensed1

Equihash solvers. But what is an “Equihash solver”? Here we aim to put together the information on the problem statement from
the official contest rules [1], the primary reference on Equihash [2], and other information inferred from existing implementations
of the specific version of Equihash at hand (Zcash-equihash) [3–7].

1.1 Contest API

Let’s begin with the API specified by [1], which outlines the inputs and outputs of the Zcash-equihash problem.
✞ ☎

i n t So l v e rFunc t i on (cons t unsigned char * input ,
bool (* v a l i dB l o c k) (void * va l i dB lo ckDat a , cons t unsigned char * s o l u t i o n) ,

void * va l i dB lo ckData ,
bool (* c a n c e l l e d) (void * c a n c e l l e dDa t a) ,

void * c anc e l l e dDa t a ,
i n t numThreads ,
i n t n , i n t k) ;

✝ ✆

1The Free Software Foundation points out that this term is ambiguous — not only has MIT used many licenses for various projects over the years, but the term is
actually in common use to refer to both the Expat license and the X11 license. The version specified by https://zcashminers.org/rules is the Expat license.

https://zcashminers.org/
http://web.archive.org/web/20161023201738/https://zcashminers.org/
https://www.gnu.org/licenses/license-list.en.html#Expat
https://www.gnu.org/licenses/license-list.en.html#X11License
https://zcashminers.org/rules
http://directory.fsf.org/wiki/License:Expat

2

1.1.1 Asynchrony & Threading

This appears to be an asynchronous API: So l v e rFunc t i on is expected to spin up numThreads new threads, then quickly return as
those threads begin to do the actual work. Upon finding a s o l u t i o n , the callback v a l i dB l o c k should be invoked. At various points
during the solving process, the c a n c e l l e d callback should be invoked to check whether to abort. v a l i dB l o c k and c a n c e l l e d are
both given with associated void * closures (va l i dB lo ckDa t a and c a n c e l l e dDa t a respectively), which should be passed along in
the natural way.

1.1.2 Return value

One problem with this interpretation is that the API specifies that So l v e rFunc t i on ’s return value is the number of solutions found
(or −1 on error). Yet, the number of solutions is not ready until the work is completed, so this is incompatible with the fast-returning
asynchronous model. Our reconciliation of this is that we return 0 on success and −1 on error; after all, at the time success is signaled,
0 solutions have been found. The actual information about how many solutions libeqh finds is conveyed by the number of times
v a l i dB l o c k is invoked.

1.1.3 Input & Output

i npu t points to a 140-byte block of memory, the “block header up to end of the nonce”, which is laid out as follows:

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Version

Hash of previous block

Hash of Merkle root

Reserved

Time Bits

Block header candidate

Nonce

Block header up to
the end of the nonce

Our goal is to compute a s o l u t i o n which completes the block header, like so:

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 127

Version

Hash of previous block

Hash of Merkle root

Reserved

Time Bits

Block header candidate

Nonce

Solution
...

Block header

3

Figure 1. The bit-layout of “minimal representation” of a Zcash-equihash solution for n = 144, k = 5.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

MSB x1 LSB x2 x3

x3 x4 x5 x6

x6 x7 x8

x8 x9 x10 x11

x11 x12 x13

x13 x14 x15 x16

x16 x17 x18

x18 x19 x20 x21

x21 x22 x23

x24 x25 x26

x26 x27 x28 x29

x29 x30 x31

x31 x32

In particular, the s o l u t i o n is a solution to a slightly modified version of the Equihash proof-of-work puzzle [2], with integer
parameters n and k specified as input to So l v e rFunc t i on . The layout of a s o l u t i o n depends on those parameters: it consists of
2k bitstrings xi , each of length n

k+1
+ 1, concatenated together. For example, see Figure 1.

To summarize, when we abstract away the asynchrony and threading concerns, So l v e rFunc t i on is given n and k (parameters of
the Equihash construction), and i npu t (in the notation of [2], the seed I already concatenated with the nonce V , i.e., I‖V), and
outputs s o l u t i o n (in the notation of [2], x1‖x2‖ . . .‖x2k).

1.2 Zcash-equihash

In this section, we outline the version of Equihash we need to solve, which we call Zcash-equihash, since it is distinct from what is
presented in [2] in several ways (minor modifications, but any modification is significant here). We refer to the latter, in this section,
as original-Equihash.

The list of conditions that define an original-Equihash solution according to [2] are listed in Figure 2. We now discuss the
differences.

1.2.1 Hash function

Zcash-equihash’s hash function, H (I‖V , xi), is defined in terms of BLAKE2b [8], as follows. First, the personalization string is set
to “ZcashPoW” followed by n and k in little-endian order [7]. The salt is set to 0. Then, given an I‖V and an index xi , instead of
directly concatenating them as in original-Equihash, we first divide xi by a constant (Ind i c e sPerHashOutput:= 512/n), yielding
quotient x◦i and remainder x∗i . Then we compute BLAKE2b(I‖V ‖x◦i), and from the output take bits n · x∗i through n · x∗i +n−1, so
that the resulting “hash output” is exactly n bits long.

We speculate that the rationale for this is to reduce the number of hash evaluations required to solve Zcash-equihash, since hashing
is CPU-hard and Equihash aims to be primarily memory-hard.

1.2.2 Difficulty condition

In the context of Zcash, the difficulty condition is considered part of “proof of work” rather than part of Zcash-equihash [3]. Thus
the difficulty condition is effectively absent from Zcash-equihash, along with its corresponding parameter, d .

4

Figure 2. The problem statement of original-Equihash [2].

Given integer parameters n, k, d , and seed bytestring I , generate 160-bit nonce V and
�

n
k+1
+ 1
�

-bit

x1, x2, . . . , x2k such that:

• Generalized birthday:

H (I‖V ‖x1)⊕H (I‖V ‖x2)⊕ · · · ⊕H (I‖V ‖x2k) = 0

• Algorithm binding:
– Intermediate solutions:

∀w,ℓ H (I‖V ‖xw2ℓ+1)⊕ · · · ⊕H (I‖V ‖xw2ℓ+2ℓ) has nℓ
k+1

leading zeros

– Ordering:

∀w,ℓ
�

xw2ℓ+1

xw2ℓ+2

. . .

xw2ℓ+2ℓ−1

�

<
�

xw2ℓ+2ℓ−1+1

xw2ℓ+wℓ−1+2

. . .

xw2ℓ+2ℓ

�

• Difficulty:
H (I‖V ‖x1‖x2‖ . . .‖x2k) has d leading zeros

1.2.3 Nonce

Zcash-equihash uses a 256-bit nonce instead of a 160-bit nonce. More importantly, in Zcash-equihash we are provided the nonce,
already concatenated into the input, instead of being asked for a nonce as part of the output. Generating the nonce is part of “proof
of work” but not part of Zcash-equihash.

1.3 Our problem statement

1.3.1 Parameters

We are given integer parameters n and k satisfying the following conditions:

• Positivity: n > 0 and k > 0.

• Hash chunk is bytestring: n is divisible by 8, so we can take an integer number of bytes of BLAKE2b output for each index.

• Index is bitstring: n is divisible by k + 1, so that the xi , which are n
k+1
+ 1 bits long, are integer-length bitstrings.

• Solution is bytestring: k ≥ 3, so that 2k ·
�

n
k+1
+ 1
�

is divisible by 8.

• Index fits in dword: n
k+1
+ 1< 32, so we can assume each index fits in a 32-bit dword.

• Hash chunk fits in yword: n < 256, so we can assume each hash chunk fits in a 256-bit ymm register on a modern x64 CPU.

1.3.2 Input

Input consists of the parameters, and an opaque 140-byte block of memory M (corresponding to I‖V in original-Equihash).

1.3.3 Output

Output consists of a block of memory of length 2k

8
·
�

n
k+1
+ 1
�

bytes, containing bitstrings x0, x1, . . . , x2k−1 each of length n
k+1
+1 bits,

in “minimal representation” as shown in Figure 1. The xi satisfy the following properties (with H defined as in section 1.2.1):

• Intermediate solutions:

∀ℓ ∈
�

0, k
�

∀w ∈
�

0,2
k−ℓ
�

H (M , xw2ℓ)⊕ · · · ⊕H (M , x(w+1)2ℓ−1) has nℓ
k+1

leading zeros

5

• Generalized birthday:

H (M , x0)⊕ · · · ⊕H (M , x2k−1) = 0 (i.e., has n(k+1)

k+1
leading zeros)

• Ordering:

∀ℓ ∈
�

0, k
�

∀w ∈
�

0,2
k−ℓ
� �

xw2ℓ

· · ·

xw2ℓ+2ℓ−1−1

�

<
�

xw2ℓ+2ℓ−1

· · ·

x(w+1)2ℓ−1

�

2 Our Algorithm

2.1 Overview

As intended, the output conditions suggest a natural outline for a solution algorithm:

1. Compute all H (M , i) (for i ∈
h

0,2
n

k+1
+1

�

), and note collisions on the first n
k+1

bits

2. Set j := 1

3. Peform all pairwise XORs on pairs which share the same first j n
k+1

bits, and note collisions on the first (j + 1)
n

k+1
bits.

4. Increment j . If j < k, repeat from the previous step.

5. Find a collision in the final XOR results.

6. Trace back the solution tree and make swaps as necessary to satisfy the ordering condition.

2.2 Probabilistic analysis

References

[1] Zcash Open Source Miner Challenge: Official Rules, Oct. 2016, url: https://zcashminers.org/rules (cited on p. 1).

[2] Alex Birukov and Dmitry Khovratovich: “Equihash: asymmetric proof-of-work based on the generalized birthday problem,”
Network and Distributed System Security Symposium, NDSS’16, (San Diego, California), Internet Society, Feb. 21–24, 2016,
url: https://www.internetsociety.org/sites/default/files/blogs-media/
equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf (cited on pp. 1, 3, 4).

[3] The Zcash developers: zcash, Aug. 2016, url: https://github.com/zcash/zcash,
in particular, the functions CheckEquihashSolution, IsValidSolution, and the definition of CBlockHeader
(cited on pp. 1, 3).

[4] aabc: equihash-zcash-c, Oct. 2016, url: https://github.com/aabc/equihash-zcash-c (cited on p. 1).

[5] xenoncat: equihash-xenon, Oct. 2016, url: https://github.com/xenoncat/equihash-xenon (cited on p. 1).

[6] David Jaenson: equihash, Oct. 2016, url: https://github.com/davidjaenson/equihash (cited on p. 1).

[7] John Tromp: equihash, Oct. 2016, url: https://github.com/tromp/equihash (cited on pp. 1, 3).

[8] Markku-Juhani Saarinen and Jean-Philippe Aumasson:
The BLAKE2 Cryptographic Hash and Message Authentication Code (MAC), RFC 7693 (Informational),
Internet Engineering Task Force, Nov. 2015, url: http://www.ietf.org/rfc/rfc7693.txt (cited on p. 3).

https://zcashminers.org/rules
https://www.internetsociety.org/sites/default/files/blogs-media/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
https://www.internetsociety.org/sites/default/files/blogs-media/equihash-asymmetric-proof-of-work-based-generalized-birthday-problem.pdf
https://github.com/zcash/zcash
https://github.com/zcash/zcash/blob/70db019c6ae989acde0a0affd6a1f1c28ec9a3d2/src/pow.cpp#L80-L105
https://github.com/zcash/zcash/blob/70db019c6ae989acde0a0affd6a1f1c28ec9a3d2/src/crypto/equihash.cpp#L716-L761
https://github.com/str4d/zcash/blob/master/src/primitives/block.h#L26-L33
https://github.com/aabc/equihash-zcash-c
https://github.com/xenoncat/equihash-xenon
https://github.com/davidjaenson/equihash
https://github.com/tromp/equihash
http://www.ietf.org/rfc/rfc7693.txt

	Defining the Problem
	Contest API
	Asynchrony & Threading
	Return value
	Input & Output

	Zcash-equihash
	Hash function
	Difficulty condition
	Nonce

	Our problem statement
	Parameters
	Input
	Output

	Our Algorithm
	Overview
	Probabilistic analysis

